Why Gas Leak Detection (LDAR) must continue to be a priority

For a while it seemed LDAR was no longer critical. Why are we so confident that LDAR remains critical and a priority for the energy industry and the world?

Why Gas Leak Detection (LDAR) must continue to be a priority
Why Gas Leak Detection (LDAR) must continue to be a priority

For a while there, it seemed LDAR was no longer critical.

No one wanted to talk about LDAR. As a result, investments in LDAR improvements shriveled. Some teams even lost their jobs.

The people in charge appeared to be converging on a view suggesting that the leak detection problem was no longer a priority.

The last administration, so favorable towards fossil fuel, seemed to deemphasize the importance of LDAR and environmental compliance.

We spoke with compliance officers who told us they were already understaffed, and if methane leaks were not important, then LDAR compliance was no longer a priority.

Monitoring by inspectors slowed down, and some saw it as an opportunity to slow down their LDAR monitoring.

COVID-19 shut the world down, and demand for oil and gas fell, resulting in depressed prices. As a result, investments in the sector dried up, and some good companies closed shop.

At the same time, the alternative energy story reached a global fever. It seemed that everywhere fossil fuel was no longer necessary. Moreover, the world would eliminate the need for fossil fuels shortly.

Here in the USA, a new administration with a substantial progressive agenda favoring what was labeled the Green New Deal aggressively pitched a narrative that undermined the value of fossil fuels.

Against that backdrop, one could understand the broad pessimism around LDAR.

Why are we confident that LDAR remains a critical priority for the energy industry and the world?

To understand our view on the importance of LDAR, we need to remind everyone of a few fundamental truths.

  1. No one has designed a fossil fuel exploration, production, storage, or distribution system immune from leaks.
  2. Gas leaks are hazardous to businesses, the community, and the environment.
  3. Alternative energy sources will eventually replace fossil fuel use; however, alternative energy only represents 5% of today’s energy generated. It will be a while before that transition is complete.

Further, we know from experience that gas leaks occur even when production slows down.

Unfortunately, gas leaks don’t go away because an energy company is bankrupt or no longer in business. 

Gas leaks don’t go away until we get rid of leaking equipment. And let’s face it; even that will not eliminate all VOC emissions.

The simple reality understood by LDAR professionals is that leak detection is a critical priority and will be for a long time into the future!

Several enlightened energy management teams understood this and kept their LDAR teams intact and their eyes on improving leak detection despite those counter-prevailing winds that suggested otherwise.

Let’s face it, the new administration may be decidedly anti-fossil fuel, but they are all in on compliance. After all, it may be a cudgel to go after the industry. 

That suggests an aggressive compliance stance by the EPA towards methane and other volatile organic compounds (VOC) gas leaks. Remember the 0000a rules that were delayed or ignored under the old administration in the USA? Expect to see it back on the agenda and pushed aggressively.

Corporate leaders and investment managers are paying more attention to environmental metrics. As a result, we expect that LDAR’s performance and diligence will significantly contribute to the energy industry meeting newly planned rigorous environmental reporting standards.

Expect more regulatory scrutiny

As we worked on this piece, Apple Inc called for the U.S. Securities and Exchange Commission (SEC) to require companies to disclose far-reading emissions information, such as how customers use their products.

Source: https://www.reuters.com/article/us-climate-change-apple-disclosure/apple-backs-far-reaching-emissions-disclosure-rules-idUSKBN2C024O

Expect to see more emphasis on Scope 3 emission reporting and an impact on energy business valuations. That alone will have the effect of pushing more top managers to invest more in LDAR capabilities.

Even if you are not a publicly-traded company subject to SEC rules, we humbly suggest that every management team learn the value of their LDAR operation. For a reminder of our view of why this is important, see our previously published eBook that lays out Why every Energy Executive should know LDAR.

What should energy companies be doing about gas leaks?

In October 2007, the EPA published a document titled Leak Detection and Repair – A Best Practices Guide in which they said:

In setting Compliance and Enforcement of National Priorities for Air Toxics, EPA has identified LDAR programs as a national focus. 

The EPA was right then about the importance of leak detection and repair efforts when they crafted the initial LDAR regulations. In arriving at the LDAR requirements, they built a substantial LDAR database and used that data to develop science-based recommendations for improving LDAR operations.

The EPA has discovered through its learning and education program that a well-implemented LDAR program delivers business, operational, safety, and environmental benefits. Further, the EPA has done a terrific job documenting and sharing lessons learned in what they call the Best Systems of Emissions Reduction (BSER).

The EPA’s best practices are a road map that every energy company should use to attack its leak detection problem. Even if the regulations do not cover your company’s operation, we think there is excellent value in implementing a serious LDAR program. The benefits are compelling.

What are we doing to help improve LDAR outcomes?

The pandemic led to slowdowns and a general malaise in some businesses, but that is not the case with our team.

We spent the pandemic recommitting to improving everything we knew about leak detection and figuring out ways to reduce inefficiency.

The result? We have eliminated an average of 25% of the cost of our LDAR solutions. And we have improved every aspect of the approach and technology we recommend and use ourselves.

That means LDAR teams can now invest in solutions to find gas leaks faster, more safely, and effectively with paybacks of less than a year.

What solutions?

The EPA recommendations are an excellent baseline for starting to think about LDAR. Still, because of the regulatory mindset, all too often, that’s where teams settle on their adoption and implementation.

That means too many teams still use old technology and a dated approach to LDAR.

By focusing on inspecting each component that is a potential leak point, teams end up stuck implementing an expensive approach that allows for annual inspections at best.

But we know that leaks are random, and the average time a leak will be spouting unchecked is half the inspection cycle time. That means if you inspect once a year, you will find gas leaks on average six months late.

What should a company do, then? 

The obvious answer is to increase the frequency of inspections.

But the inspection protocols are expensive and focused on finding every minute leak. As a result, taking the same approach to gas leak detection is not cost-effective.

Our team has been working to rethink the approach and the solutions they use to dramatically increase the frequency of targeted inspections while reducing the cost of comprehensive assessments.

How do we do that? 

We start with Pareto’s rule. The most significant leaks are the smallest in number and account for most of the potential gas leaked.

So we focus on using technology that helps identify large leaks faster. For example, our overview scan methodology implements systems that can cost-effectively identify large leaks through regular inspections. If we inspect each month, the average large leak is found in two weeks, resulting in a 90% reduction from an annual approach.

If we inspect each month, the average large leak is found in two weeks, resulting in a 90% reduction from an annual approach.

Viper Drones

We ensure that each detailed inspection uses the BSER technology (sniffers, OGI, etc.), which is more productive for identifying gas leaks than the traditional FID approach first recommended by the EPA.

The result? 

You find your most significant gas leaks a lot earlier, and your overall operation is more productive. 

That’s right. When thoughtfully implemented, companies find LDAR saves operational costs, reduces safety issues, and improves environmental performance.

LDAR, it’s good for the environment and good for the bottom line. 

We encourage every energy executive to spend more time supporting your LDAR teams and bringing new technology and approaches to this vital operation.

We all need LDAR teams to succeed.

What, then, should be the LDAR priorities?

Your priorities for LDAR depend on where you sit within the industry.

But by and large, there is enough benefit in LDAR for everyone. We say that the top of the list is spending more time understanding how LDAR contributes to your business and building the necessary capabilities to improve your current LDAR outcomes.

We recommend you don’t just adopt the EPA method; actively seek to innovate on top of those recommendations and seek out readily available process and technology solutions to make your LDAR technician more effective.

Don’t just adopt the EPA method; actively seek to innovate on top of those recommendations and seek out readily available process and technology solutions to make your LDAR technician more effective.

Viper Drones

The EPA regulations require a written LDAR program. It lays out five fundamental elements for every LDAR program. They are:

Identifying Components.

The EPA has collected LDAR data from thousands of operations and established that certain valves, pumps, and other related process equipment tend to leak. Therefore, the EPA recommends identifying, tagging, and locating each regulated component on process flow diagrams or piping/instrumentation diagrams. In addition, you should add these components to your audit list for monitoring or regular inspections.

The EPA recommends a periodic field audit to update your list and its locations. 

The EPA method has traditionally recommended physical tags. However, virtual tagging and 3D modeling can significantly enhance the identification and positioning of a leak and inform the repair technician of the exact location. Companies will also save by not frequently replacing tags lost or destroyed by the environment.

Leak Definition.

Method 21 requires measuring VOC emissions from regulated components in parts per million (ppm). A leak is detected when­ the measured concentration exceeds the threshold standard (i.e., leak definition) for the applicable regulation.

Many equipment leak regulations also define a leak based on visual inspections and observations (such as fluids dripping, spraying, misting, or clouding from or around components), sound (hissing), and smell.

The challenge is that leak definitions vary by component type, regulation, and monitoring interval. They may also vary depending on the type: gas, vapor, light, or heavy liquid.

This definition variation makes the LDAR inspection and reporting process confusing at the inspection level.

We recommend using a definition lower than the regulation and simplifying your LDAR program using the most stringent leak definition when multiple rules govern.

Monitoring components.

The primary method for monitoring to detect leaking components is EPA Reference Method 21 (40 CFR Part 60, Appendix A).

Method 21 is a procedure used to detect VOC emissions from process equip­ment using a portable detecting instrument.

Monitoring intervals vary according to the applicable regulation but are typ­ically weekly, monthly, quarterly, and yearly. For example, the monitoring interval for connectors can be every 2, 4, or 8 years. The monitoring interval depends on the component type and the periodic leak rate for the component type.

The portable detecting instruments first recommended by the EPA were a photoionization detector (PID) or a flame ionization detector (FID).

A PID is a portable gas and vapor detector that contains an ultraviolet lamp that releases photons absorbed by the compound in an ionization chamber. Technicians use a PID to identify a range of volatile organic compounds (VOC). PID delivers results quickly and is easy to use. They need regular cleaning, but they are accurate, reliable, and have good sensitivity for VOC detection. 

FID equipment is typically heavier and larger than PID. It uses a hydrogen-air flame to ionize a sample gas and determine its concentration. It is more costly and less reliable than a PID. It requires regular refilling of the hydrogen cylinder and can be more cumbersome to use. However, they are frequently calibrated with methane, the main component of natural gas, making them a better choice when measuring natural gas.

PID and FID have a place in every LDAR program, but a monitoring technician must be close to every monitored or leaking component for accurate leak monitoring. This proximity requirement makes them less safe and cumbersome, forcing less frequent inspections.

The EPA approves modern approaches such as optical gas imaging (OGI) and I.R. or laser detection devices as alternate methods which can be dramatically safer, more cost-effective, and quicker. In addition, these new methods will also continue to improve as new capabilities are implemented, such as quantification and comparative monitoring. And while they meet today’s LDAR requirement, they open a path to convert LDAR operations beyond mere compliance.

Repairing Components.

Leak detection aims to prioritize maintenance activities toward repairing leaking components. The EPA recommends, and it is good practice to repair leaking components as soon as possible after detection. If possible, replace problem components with leakless or other improved technologies.

Recordkeeping.

The EPA recommends records of the equipment, inspection, location, regular maintenance, testing, leak occurrence, and repair. We can’t imagine running a complex operation without those basics.

In summary, a good LDAR program is not very different from an excellent preventative maintenance program. It embodies all the best practices of a well-run operation and focuses that lens on finding hazardous air pollutants (VHAP) or gas leaks that occur in your process. 


Methane Emission Reduction

In 2014 Colorado led the way by specifically regulating Methane reductions. Federal regulations followed in 2016 (40 CFR part 60, subpart OOOO), generally referred to as Quad-O.

The regulations apply to well sites, gas processing plants, tank farms, and every other part of the oil and natural gas supply chain. As a result, a potpourri of known historical sources of leaks – fugitive emissions, thief hatches, compressors, valves, vents, and other components across these facilities are subject to LDAR compliance.

There are more than a million well heads in the USA, each with a small collection of regulated components. 

Innovative operators find Optical Gas Imaging and Drone enabled OGI scans a dramatically more effective approach to inspecting these logistically challenging facilities and components.

And, in so doing, they are discovering all kinds of savings in the process. For example, one team generated six-figure savings simply by eliminating scaffolding required for access to conduct inspections.

“We estimate that it is technically possible to avoid around three quarters of today’s methane emissions from global oil and gas operations. Even more significantly, around 40% of current methane emissions could be avoided at no net cost.”

International Energy Agency

Source: https://www.iea.org/reports/methane-tracker-2020


Industry Efforts to Focus on the environmental challenges

One Future is a coalition of 41 natural gas companies. 

ONE Future’s goal is to ensure the future of natural gas as a clean energy source by reducing member company methane emissions to 1% (or less).

USING UNIFORM, EPA-APPROVED REPORTING PROTOCOLS, THE COALITION REGISTERED A 2019 METHANE INTENSITY NUMBER OF 0.334%, BEATING ITS ONE PERCENT GOAL BY 67%.


The Environmental Partnership comprises 83 companies and includes many of the USA’s major oil and natural gas producers committed to continuously improving its environmental performance. 

The Environmental Partnership’s initial focus is on technically feasible solutions, commercially proven to reduce emissions reductions significantly. In addition, the Environmental Partnership will also provide a forum for participants to share information and analyze best practices and technological breakthroughs to improve our understanding of emissions and how best to reduce them.




Share this, please